
First Principles Calculations of Existing and Novel Electrode Materials

Gerbrand Ceder

Principal Investigator, Project ID bat054
Lawrence Berkeley National Laboratory
Materials Science Division

Presenter: Tina Chen

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Date Oct 1 2016
- End Date: Sept 2020

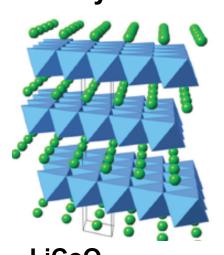
Budget

- Total budget (4 years): \$1,800K
- FY18 funding \$450K

Barriers Addressed

- High cost and resource scarcity of Co-containing batteries
- Low energy-density of non-Cocontaining batteries
- Poor stability of current Liexcess rocksalt disordered structures

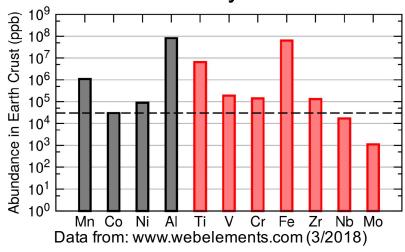
Partners/Collaborations within the VT program


Kristin Persson (LBNL), Mahalingam Subramanian (ANL), Wanli Yang (LBNL), Feng Wang (BNL), NCEM (LBNL), G. Chen (LBNL), Bryan McCloskey (UC Berkeley), Jinhyuk Lee (MIT)

Relevance (1): Dependence of layered

BERKELEY LAB

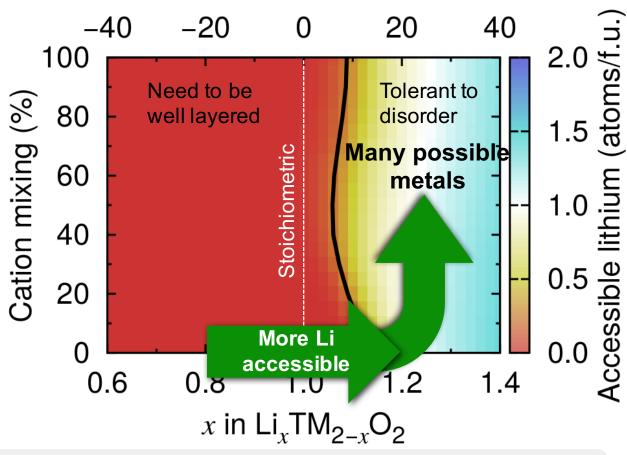
cathodes on Co


Stoichiometric layered

LiCoO₂ Li(Ni_{0.8}Co_{0.15}Al_{0.05})O₂ Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O₂

- All contain expensive, scarce Co
- Main components limited to Co, Ni, and Mn

Abundance of battery-relevant elements



Relevance (2): Disordered materials only work with Li-excess

Lithium excess/deficiency (%)

Design Criteria: Need Li-excess > 10% to enable percolation in cation-disordered cathodes

Relevance (3): Afterward, numerous successful examples of Li-excess disordered rock salts

Year	Compound	Journal	Capacity
2014	$Li_{1.211}Mo_{0.467}Cr_{0.3}O_2$	Science	280 mAh/g
2015	Li ₂ VO ₂ F	Adv. Energy Mater.	320 mAh/g
2015	$Li_{1.3}Nb_xM_{0.7-x}O_2(M = Mn, Ni, Co, Fe)$	PNAS	300 mAh/g
2015	$Li_{1.25}Nb_{0.25}Mn_{0.5}O_2$	Electrochem. Commun.	290 mAh/g
2015	$\text{Li}_{1.2}\text{Ni}_{0.333}\text{Ti}_{0.333}\text{Mo}_{0.133}\text{O}_2$	Energy Environ. Sci.	230 mAh/g
2015	$Li_xNi_{2-4x/3}Sb_{x/3}O_2$	Nano Letters	150 mAh/g
2015	$Li_{1+x}Ti_{2x}Fe_{1-3x}O_2$	Chem. Mater.	250 mAh/g
2016	Li ₄ Mn ₂ O ₅	Nat. Mater.	350 mAh/g
2016	$Li_{1.3}Nb_{0.3}V_{0.4}O_2$	Chem. Commun.	270 mAh/g
2017	$\text{Li}_{4/3}\text{Mo}^{6+}_{2/9}\text{Mo}^{3+}_{4/9}\text{O}_2$	ACS Energy Letters	330 mAh/g
2017	$\text{Li}_{1.15} \text{Ni}_{0.45} \text{Ti}_{0.3} \text{Mo}_{0.1} \text{O}_{1.85} \text{F}_{0.15}$	Nat. Commun.	250 mAh/g
2017	$LiMoO_{2-x}$ -LiF $(0 \le x \le 2)$	Journal of Power Sources	320 mAh/g
2018	Li ₂ MnO ₂ F	Energy Environ. Sci.	280 mAh/g
2018	$\text{Li}_{2}\text{Mn}_{2/3}\text{Nb}_{1/3}\text{O}_{2}\text{F}$ / $\text{Li}_{2}\text{Mn}_{1/2}\text{Ti}_{1/2}\text{O}_{2}\text{F}$	Nature	320 mAh/g

Relevance (4): Percolation requirement reduces theoretical capacity from redox metal by introducing anion redox

Li-excess cathodes

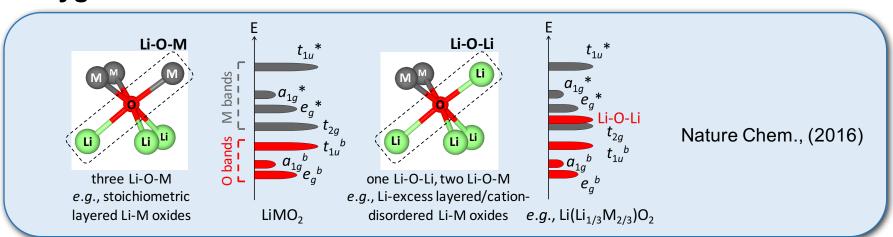
$$Li_{1+x}M_{1-x}O_2$$
Valence of M \uparrow

 $Li_{1.25}Nb_{0.25}Mn_{0.5}O_2$

 $Mn^{3+/4}$ + capacity = 147mAh/g

High-valent ion (inactive)

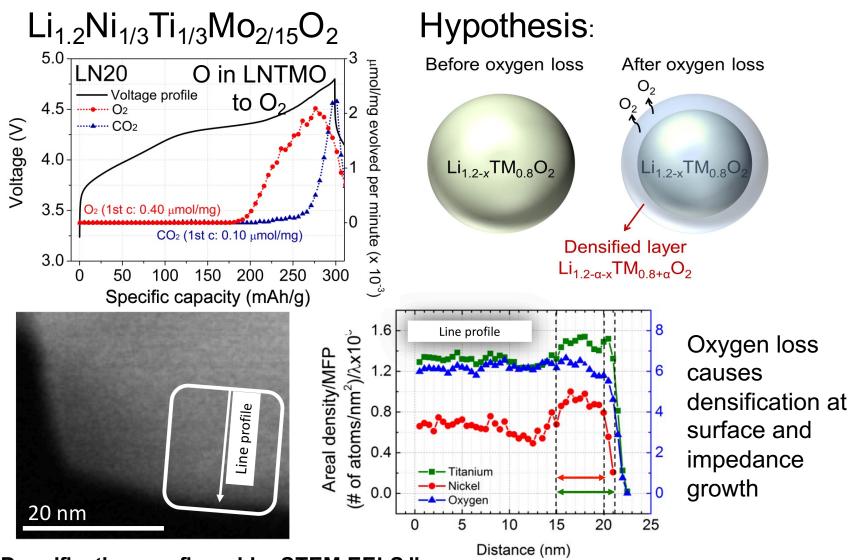
 Nb^{5+} , Mo^{6+} , Ti^{4+} , Zr^{4+} , ...


Redox element

Ni²⁺, Mn³⁺, Fe³⁺, V³⁺...

 $Li_{1.2}Ni_{0.32}Ti_{0.35}Mo_{0.135}O_2$

 $Ni^{2+/4+}$ capacity = 193mAh/g


Oxygen oxidation

VS.

Relevance (5): Oxygen loss and densification

Densification confirmed by STEM-EELS line scan

Relevance (6): Project objectives

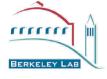
- To understand the role of Li-excess in making high capacity, high energy density cathode materials.
- To understand how Li-excess and cation disorder influence participation of oxygen ions in the redox activity.
- To use the concepts of cation disorder and oxygen redox to create high capacity cathodes.
- To understand the strategy of fluorination toward improving cathode materials.

Approach

Li-excess cation-disordered materials have very high capacity and present an alternative to typical layered cathodes. However, they suffer from cycling instability due to oxygen loss.

- Propose and test fluorination as a method to increase transition metal redox and reduce oxygen oxidation and oxygen loss.
- Given the success of fluorination, develop an understanding of the feasibility of fluorination in different types of materials.
- Develop new strategies combining fluorination and multi-electron transition metal redox to maximize transition metal capacity.
- Understand the effect of fluorination on other properties of the system.

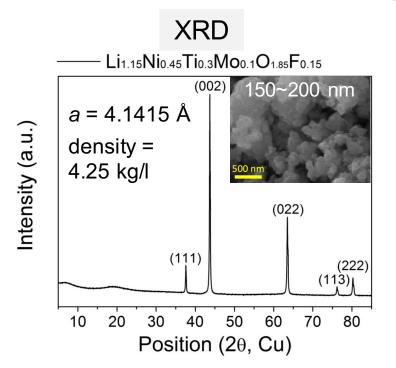
Methods


- DFT in GGA and GGA+U are used as implemented in VASP software
- Cluster expansions are used to represent the interactions between different atoms for a variety of $Li_{1+x}TM_{1-x}O_{2-2x}F_{2x}$ systems, with TM = Ti, V, Cr, Mn, Fe, Co, and Ni
- Monte Carlo calculations in conjunction with the cluster expansions can be used to obtain finite temperature thermodynamics and to predict the ability of the systems to be fluorinated
- DFT relaxations of the delithiated Mn-Ti and Mn-Nb systems are used to analyze the interaction between the oxidation of manganese and the oxidation of oxygen

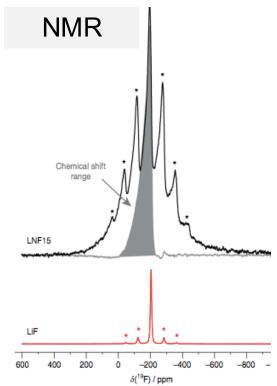
Milestones

Month Year	Milestone	Status
Dec 2017	Assess, through modeling, the viability of fluorination of disordered-rocksalt cathodes in order to reduce the oxygen activity	Complete
March 2018	Synthesize one partially fluorinated cathode material and demonstrate fluorination through NMR, TEM, XRD or other characterization tool.	Complete
June 2018	Demonstrate viability of reducing transition metal valence in Li-excess materials in order to create higher capacity	Complete
Sept 2018	Demonstrate reduced surface oxygen loss by surface modification of a disordered cathode material using DEMS or TEM	On track – ahead of schedule

Technical accomplishments: Fluorination of a Ni-Ti-Mo Li-excess disordered material

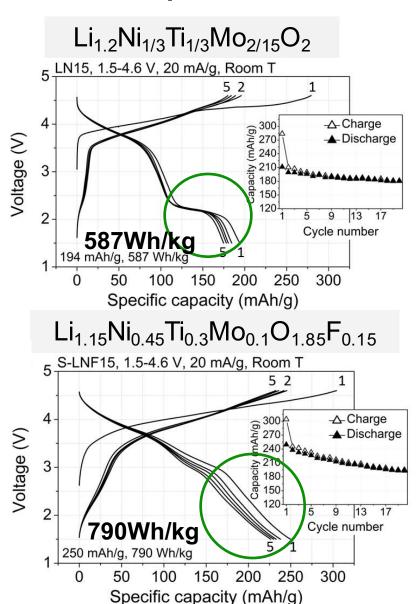


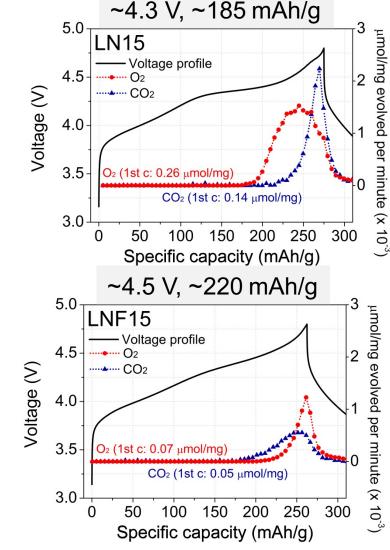
Lower anion valence $Li_{1+x}M_{1-x}O_2 \rightarrow Li_{1+x}M_{1-x}O_{2-y}F_y$: fluorination


"LN15" $\text{Li}_{1.15}\text{Ni}_{0.375}\text{Ti}_{0.375}\text{Mo}_{0.1}\text{O}_2$

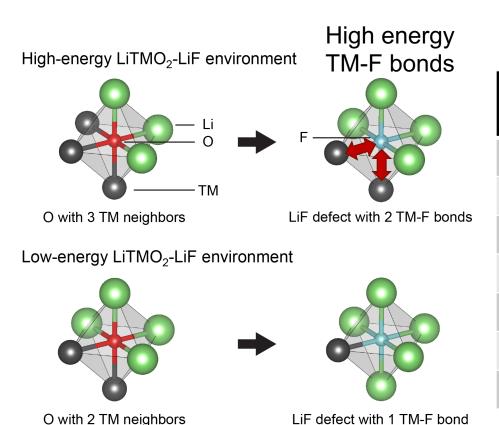
"LNF15" Li_{1.15}Ni_{0.45}Ti_{0.3}Mo_{0.1}O_{1.85}F_{0.15}

20% metal redox capacity increase



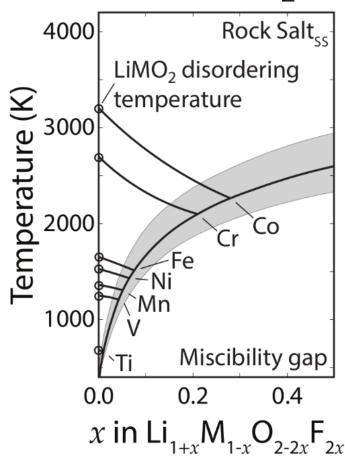


Technical accomplishments: Fluorination reduces polarization oxygen loss

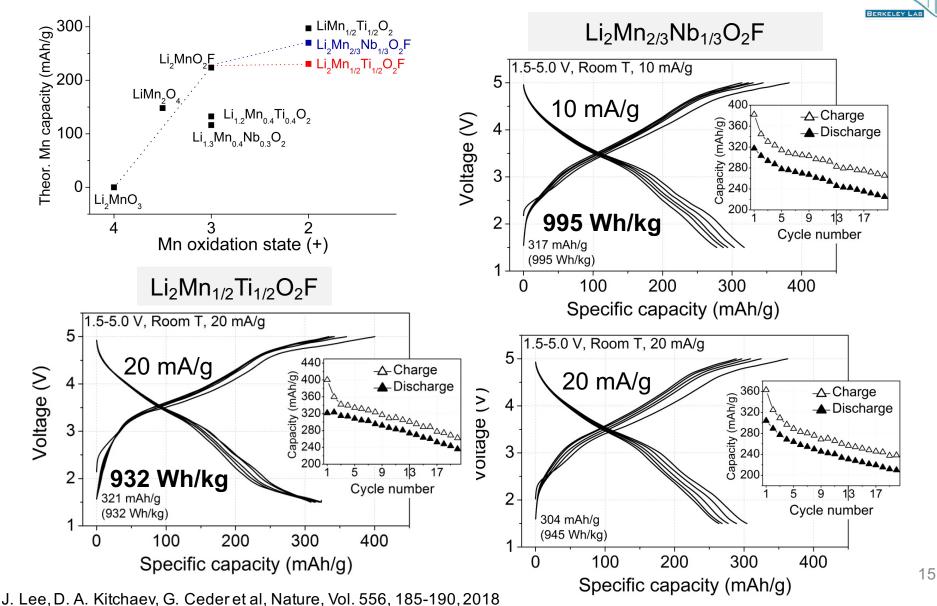

DEMMS shows less O-loss with fluorination

J. Lee, G. Ceder et al, Nat. Comm, 8, art number 981 (2017)

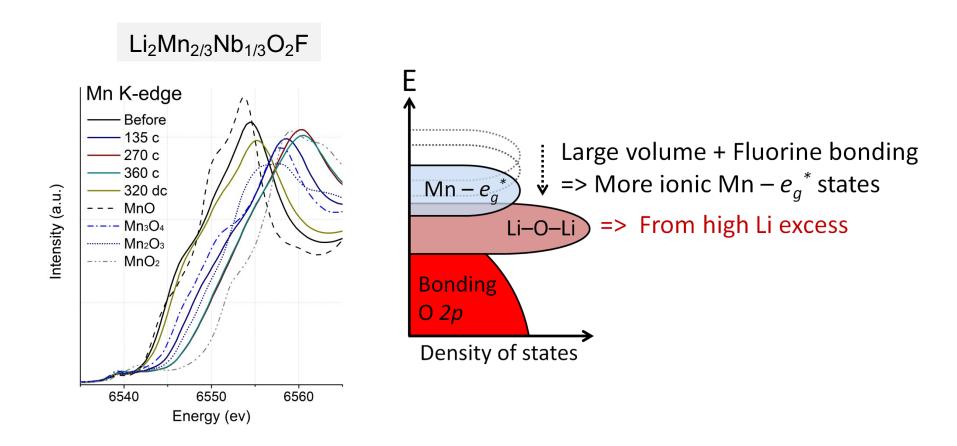
Technical accomplishments: LiF found to be largely insoluble in ordered phases

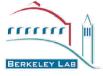

Chemistry (Structure)	LiF Solubility at 750 °C (%)
LiTiO ₂ (γ-LiFeO ₂)	0.29
LiVO ₂ (NaMnO ₂)	0.6
LiCrO ₂ (NaMnO ₂)	0.1
LiMnO ₂ (o-LiMnO ₂)	4.0
LiFeO ₂ (γ-LiFeO ₂)	0.76
LiCoO ₂ (NaMnO ₂)	0.006
LiNiO ₂ (NaMnO ₂)	0.38

- In ordered phases, typically each O has 3 TM neighbors
- No low energy sites for F incorporation gives low solubility
- o-LiMnO₂ uniquely has Li-rich environments and thus high solubility


Technical accomplishments: LiF found to be much more soluble in disordered LiMO₂

- Disordered LiMO₂ have some Lirich environments (4 or more Liaround O)
- Above disordering temperature, all LiMO₂ have significant LiF solubility
- LiF solubility in all LiMO₂ chemistries determined by ease of disordering.
- If material is forced to be disordered during synthesis (e.g. by ball milling), LiF solubility is appreciable at low T


Thermodynamics of LiF incorporation into disordered rocksalt LiMO₂ phases


Technical accomplishments: Compounds that deliver ultrahigh capacity (>300 mAh/g, ~1000 Wh/kg)

Technical accomplishments: The origin of overlap between Mn and O redox found to be

Collaborations

We have a large number of existing collaborations among both national laboratories and universities. Within Lawrence Berkeley National Laboratory, we collaborate with **Dr. Kristin Persson** on simulations as well as **Dr. Wanli Yang** for soft XAS, **Dr. Guoying Chen** for TEM, and the NCEM facility for electron microscopy. We also collaborate with **Dr. Mahalingam Subramanian** at Argonne National Laboratory for hard XAS and **Dr. Feng Wang** at Brookhaven National Laboratory for in-situ XRD.

In addition to collaborations with national laboratories, we also have close collaborations with **Prof. Bryan McCloskey** at UC Berkeley for DEMS and **Dr. Jinhyuk Lee** at MIT for synthesis and electrochemical testing.

Remaining Challenges and Barriers

- Unfavorable features of voltage profile of disordered materials
 - High voltage slope -- less energy density
 - Large hysteresis
- Poor cyclability of disordered cathodes
 - Fluorination helps, but still have irreversible oxygen loss
 - Growth of surface impedance
 - TM dissolution into electrolyte

Response to Reviewers Comments

Not reviewed during Annual Merit Review FY17

Proposed future work

Effects of fluorination of disordered rocksalts

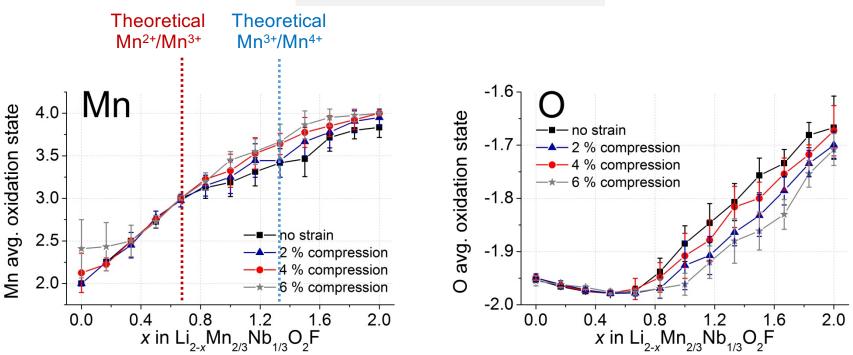
- Motivation: understand the consequences of fluorination on structural changes upon cycling and on the delithiation mechanism
- Methods:
 - Cluster expansion combined with Monte Carlo to obtain candidate structures of a system and to simulate delithiation

Partially disordered spinels as cathode material and for in-situ surface coating

- Motivation: cyclability issues with Li-excess disordered materials may be remedied by surface coating of partially disordered spinels, which have excellent Li percolation and stability at high voltage.
- Methods:
 - In-depth study of impact of Li/TM disorder and TM excess on Li
 percolation in Li_vTM_{3-v}O₄ spinels and on voltage curve.
 - Nudged-elastic band calculations to capture the kinetics of Li migration in partially disordered spinels

Summary

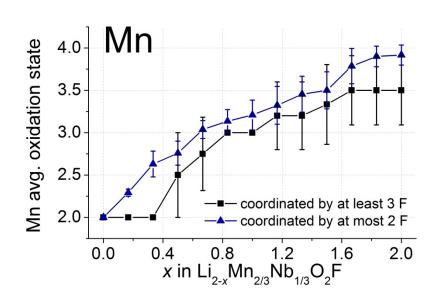
Design of Li-excess disordered cathodes is an exciting new direction to develop high energy density cathodes that greatly broaden the chemical space and enable us to make more use of cheaper transition metals.

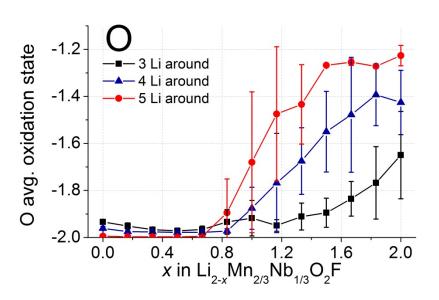

- We are advancing our understanding of the factors that govern the performance and especially the stability of cation-disordered rocksalt-type materials.
- We have demonstrated **fluorination** as an effective way to reduce the metal valence, increase the TM capacity, reduce oxygen oxidation and oxygen loss.
- We have assessed the feasibility of fluorination within the cationdisordered rock salts and discovered the necessity of Li-rich environments to incorporating LiF.
- We have combined fluorination and multi-electron transition metal redox to develop a system based on Mn²⁺/Mn⁴⁺ redox with nearly 1000 Wh/kg energy density.

Technical back-up slides

Technical accomplishments: Large crystal volume found to be an origin of overlap between Mn and O redox

DFT results on Li₂Mn_{2/3}Nb_{1/3}O₂F




Mn³⁺/Mn⁴⁺ and O redox overlap is observed with DFT. Degree of overlap decreases with compressive strain (smaller crystal volume).

Technical accomplishments: High F-content + Li excess found to be an origin of overlap between Mn and O redox

DFT results on Li₂Mn_{2/3}Nb_{1/3}O₂F

Mn atoms with high F-coordination are less oxidized. O atoms with more Li around (=>Li-O-Li) are more oxidized.